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Asymptotics of solution for considerable times of the Cauchy-Poisson problem 
of waves induced by an initial perturbation at a point of the free surface of a 
viscous incompressible fluid of infinite depth is derived with the use of linearized 
Navier-Stokes equations. The solution is obtained in integral form by the method 

of successive integral transformations. Singular points of integrands are then de- 
termined, and their effect on the value of integrals is asymptotically calculated 

for considerable times. Limits of applicability of Sreteaskii’s integral as a solu- 
tion of the considered problem in the case of simplified definition of waves [l] 
are determined. 

1, The problem of waves induced at the free surface of a viscous incompressible fluid 
of infinite depth by an initial elevation is considered in linear formulation 

av/at = - p-‘Vp + VAV, div v = 0, p = pr $ pgz (1.1) 
5 = c*, v = 0, t = 0 
- P i- pgt; i- 2pvaQlaz = 0, q iat = V, z = 0 

av,iaz + av,iaz = 0, avv/az + avJay = 0 
V-P 0, P-+0 z*+y*+Z*,~; abm-+o 
dvldy + 0 22+g*+oO 

The coordinate origin is located at the (fluid) unperturbed surface and the OZ-axis is 
directed vertically upward. 

2. Let us consider the problem of motion induced by an initial elevation of the free 
surface at the coordinate origin. We assume 

where S is the area of the elevated fluid. 9y applying to (1.1) the integral Fourier 

transformation with respect to z and that of Laplace with respect to t, we obtain 
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so > -4, SO > Req, A (sj) = 0 

A(S) = (s -I- 2) 2 - 4 (s + ?)“’ + h-1, Re (s + i)*i* > 0, L = vs&*g-i 
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3, According to [2] (Sect. 349) the equation A (s) = 0 has two roots %,a, which satisfy 
the condition He fs + I)*‘* > 0. These roots are complex conjugate for h < h, and ne- 

gative for h > h, (see [l]) . The value of h, is determined by the condition of multipli- 
citv of root s or, what is the same, by the condition that root b of equation 

tb2 + i)a - 4b + h-l = 0, b = (s + i)‘/’ (3.1) 

must be reiterated. This condition yields for the determination of h, the system 

b, (b,* + 1) - 1 = 0, (b,” + i)% - 4b, + h,-1 = (1 (3.2) 

By the theorem on the roots of an algebraic equation (see [3], 6.3, Sect. 6, Chapt. 8) 
the root of Eq. (3.1) can be represented in the form 

A-‘/’ 5 A,_~‘/~k, if IhI<L 
k=o 

i 
B&-k, if IhI>& 

k=o 

Substituting the series into Eq. (3. 1) and collecting coefficients at like powers of h, we 
determine Ak and Bk. Taking into account the condition Re (s $ f)‘A > 0, we obtain 
the related formulas for sj (i = 1,2) in the form of convergent series 

sj,= h”l” 5 a,jh”‘k, I h I < A*; sj = r, CkjP, Ihl>h* (3.3) 
k=O k=o 

aoj = iSj, 

co1 = 0, 

To determine the 
- cx,to --1, setting 

a . 
11 - -‘o, "sj =-2, asj=2exp(~~j),...;~l,z-~i 

Cl1 = --l/sr, c,l = - ‘lls, . . ; coa z - 0.9126;. . . 

integral X (t, %) we slit, as in [4],along the negative real axis from 
at the upper and lower sides of the slit 

8 = 1 + 29 &- io, (s + 1) ‘11 - - * iu 

Using the Cauchy theorem on residues and the previous substitution, from (2.2) we obtain 

&-VW O” e-vE’tu’ Us 

A, (u) = [(i - 2)s + k-112 + 16~~; y (t, E) = fo (G %) = --h-l Re f(Q) 
l~l<&l 
f (s) = s-r (s + l)‘A [(s + 2) (9 + i)‘A - 11-r exp ($Qs) 

y tt9 5) = $J fj tt* c)l fj (‘9 t) = - i2h)-‘f (‘j)? I h J > h* 
j=i 

where the values of sl,, for I h J > h, and s1 for 1 h 1 < h, are those defined in (3.3). 
To determine 5 we subdivide the interval of integration with respect to % in (2.1) into 

three parts as follows: W, El], [El, %A. IL 00); El < %*, E, > %*, %* = s”*“~&“~. 
Then 

5 = Jl+ J, + .T, + J4 + J, (3.5) 
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Functions f,,, file and CD appearing in integrals (3.6) are defined by related formulas 
(3.4) and function X (t, f) by formula (2.2). 

4. Let us examine the behavior of < for I’ = tg’/tv-‘h + 00 in the case when 

Y e v&5x-4 = T5X” _, 00, X # 0; X = xgv+a 

Several asymptotics were derived for the considered problem in [5] for y --\ 0 

The asymptotic behavior of integrals of the form J, was investigated in [S] for T+ CO . 
On the assumption that T --f 00, r --f 00 and o = gPl I x I = T2/ I X 1 + CO by suitable 
integration by parts we obtain for J, 

Here and subsequently 0 (VZ) = cm, where c = const. 
Integral J, is determined with the use of the identity in (4.2). The first term 

integral J, is calculated by formulas 3.466,, 3,952, and 6.315s of tables in [7]. 

absolute value of the second term is estimated. We have 

Jz==-- &{[I +++y e+-$ +K 

X2 
?I=--$-, 

sg”S 15 
I fiI<- 
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63 I/n 
n”h,% 5 + T” 

1 
A,-l EZ hS - F (u, h), 

16h2u2] A”-1 
F (u, h) = [Zh (1 - $)s + A.2 (1 - $94 + 

which for T -+ 00 yields 

Jz T= ~[$6+~(~)] 

s 
J2=-- 

2ngP 

x + 0, x # 0, XNz+f’ - co, xN+lz+h a co < 00 

In computing Js we restrict the expansion of fi to the first term of the series 

So0 
J3 - lim -;i- 

s 
Lo Et 

exp (- @) cos 4x exp 

(4.1) 

of the 
The 

(4.2) 

We extend the integration interval to zero and subtract the respective integral. The value 
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of the first is obtained by using formula 3.324, of tables in [7], while the second is esti- 
mated. We have 

Js - a$& Re baK1 WI + R, a = [2T] x ]]%xp (4.3) 

IRl<$cexp (-f), 1.19813 <c 6 co < co 

where K, is the Bessel function of the imaginary argument. using its asymptotic expan- 
sion ([7], 8,45fa) we find that J, decreases exponentially with respect to 2’ for G # 0 
and T -_, co. Subsequent terms in the expansion of fi do not materially affect the beha- 
vior of the integral J, for T -+ 00. 

The absolute value of the integral J4 is estimated as 

, J4 , < s~'/s~-%T-%~-CIT c, c= const, cl = (1 - b,2)/4 (4.4) 

where b, is the root of the first equation of system (3.2). 

To estimate the integral J, we first estimate function X (t, E). We change the vari- 

able of integration in the integral (2.2) by setting s = s, + iv. Since El < E < &, all 
singular points of the integrand in (2.2) lie to the left of the straight line 

.s = min {Re Sj (h,), Sj (ha)}, hj = VaPjg-'9 i = 132 

Hence it is possible to set in (2.2) s,, = -(4h)-l. The estimate for X (t, E) is obtained 

by integrating in (2.2) once by parts and setting exp (ipT~) = du . Estimating now the 
absolute value of J, we obtain 

II 
1 Jg 1 < Sg”3v-‘iaT-1 exp ( 1 - -& M, iI1 = cons& c = const (4.5) 

Substituting (4.1) - (4.5) into (3.5) we obtain various asymptotics for 5 for T + 00 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4. 10) 
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x # 0, x2”T3 -_j co t ,2(N+1)T3 < co < oo 

The fiit term of expansion (4.6) for 5 is the same as the first term of a similar ex- 
pansion (3. ‘7) of Sretenskii’s integral in [6], proposed by him for the simplified definition 
of waves in the considered problem ((46) in [I]). Thus it follows from (4.6), as well as 

from (48)and(49)in[1],(3.7),(3.17),(3.20)and(3.26)in[6],and from (4.25) and (4.27)in 
[Sj that for vtz+ -+ 0 Sretenskii’s integral defines the behavior of free surface elevation 
in the considered problem to within infinitely small quantities. 

Formulas (4.7) and (4.10) define the final stage of wave attenuation for which Sreten- 
skii’s integral is inapplicable, 

6. Similar computations in the case of three-dimensional motion of fluid induced 
by an initial elevation at the coordinate origin yield (in dimensionless variables) 

(5.1) 

Qal 

9 =-x5 I Us + (ny)‘h n=. 
Ba 5 4n2+8,1+15[(2n+1)!!12~}+ 

(2n - 5) n! 

where Q is the dimensionless volume of the elevated fluid, R is the dimensionless 
distance from the coordinate origin R = rg$?‘* and rl and T are defined in (4.8). 

The comparison of formulas (4.9) and (4.10) with (5.1) and (5.2) shows that a three- 
dimensional elevation of the free surface is more rapidly attenuated with time than a 
plane one. It should be noted that in the three-dimensional case an integral similar to 
that of Sretenskii defines the behavior of the free surface elevation to within infinitely 
smalls, if in the considered problem 

Pfi-10 = t”vs$r-lo 215: (vt/r2)3 (gt2/r)4 --+ 0 
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A regular representation is proposed for singular integrals present in integral equa- 
tions of the second fundamental problem of elasticity theory. This representation 
is used to realize the successive approximations method in solving internal and 
external problems. Questions of constructing a computational scheme are dis- 
cussed. 

Use of potential theory apparatus permits reduction of the analysis of the fundamental 
boundary value problems of elasticity theory to integral equations Cl]. To solve the second 
fundamental problem, Weil constructed regular integral equations of the second kind 
which generally possess eigenfunctions. Hence, their solution can be realized only after 
all the eigenfunctions of the adjoint equation have been determined, which is a compli- 
cated problem. 

The application of a generalized elastic potential of a simple layer alao reduces the 
mentioned boundary value problem to integral equations of the second kind, It is true 
these equations are not Fredholm equations in the classical form since their kemelshave 
a second order polarity, and the corresponding integrals should be understood in the prln- 

cipal value sense. Consequently, the equations themselves are called singular. The equa- 
tions mentioned possess quite favorable spectral properties, In the case of the external 
problem (we denote it by Z’,) the equation is solvable for an arbitrary right-hand side, 
In the case of the internal problem (Ti) , the equation is solvable when the right-hand 
side satisfies definite conditions but they agree with the conditions for existence of the 
solution of the initial problem of elasticity theory (the principal vector and the principal 
vector-moment of the external forces equal zero} and hence are assumed satisfied accor- 
ding to the fo~ulation of the problem. 

Each of the methods of solving the integral equations starts from the possibility of eva- 
luating the integral terms for some representation of the required density. The associated 
difficulties are aggravated in solving singular, especially nonuniform, integral equations. 

Questions ofrealizing the mechanical quadrature method in application to singular 


